If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16t^2-80-200=0
We add all the numbers together, and all the variables
16t^2-280=0
a = 16; b = 0; c = -280;
Δ = b2-4ac
Δ = 02-4·16·(-280)
Δ = 17920
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{17920}=\sqrt{256*70}=\sqrt{256}*\sqrt{70}=16\sqrt{70}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{70}}{2*16}=\frac{0-16\sqrt{70}}{32} =-\frac{16\sqrt{70}}{32} =-\frac{\sqrt{70}}{2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{70}}{2*16}=\frac{0+16\sqrt{70}}{32} =\frac{16\sqrt{70}}{32} =\frac{\sqrt{70}}{2} $
| 4.5x+27=-9= | | 11p+-p+12p-10=12 | | -3x-24=18 | | 16t^-80t-200=0 | | –6(8h+2)+4h=8(–5h−10) | | 3(-6p-10)=-9p-3 | | 16t^-80-200=0 | | 8a-4=5a+17 | | 21=30-1x | | 2(2x+2)=2x+12 | | −16=m+7 | | 25=1x/8+6 | | 6x^2-3x=-6 | | 9x6+4+5=9x6+9x4+9x5 | | 2.1+m=3.1-4m= | | 13x+51+5x-7x-16=200 | | 20x-4x+11x+34-10=159 | | 9s²=0 | | 9x86+4+5)=9x6+9x4+9x5 | | 8-7.2x=-6-2 | | 4x+12=6x–2 | | 5(f-1)=-20 | | 0.6x=1678 | | 21=1x/6+8 | | j-18=60 | | (x)=x6+2x4+x2+5 | | -8x2+20x+2=0 | | 14x+9x+7x+23+17=250 | | (x)=x5+x4-4x3+6x2+x-7. | | e=5=8 | | z+5^7=-3 | | -7=r |